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Abstract
Surface classification is an effective way to assess the surface quality of parts. During the last decade, the assessment of 
parts quality has gradually changed from simple geometries to complex three-dimensional (3D) surfaces. Traditional qual-
ity assessment methods rely on identifying key product characteristics of parts, e.g., the profile of surface. However, for 
point cloud data obtained by high-definition metrology, traditional methods cannot make full use of the data and lose a lot 
of information. This paper proposes a systematic approach for classifying the quality of 3D surfaces based on point cloud 
data. Firstly, point clouds of different samples are registered to the same coordinate system by point cloud registration. Sec-
ondly, the point cloud is divided into several sub-regions by fuzzy clustering. Finally, a novel parallel classification network 
method based on deep learning is proposed to directly process point cloud data and classify 3D surfaces. The performance 
of the proposed method is evaluated through simulation and an actual case study of the combustion chamber surfaces of the 
engine cylinder heads. The results show that the proposed method can significantly improve the classification accuracy of 
3D surfaces based on point cloud data.

Keywords Three-dimensional surface · Quality classification · Point cloud data · Deep learning

Introduction

As manufacturing technologies advance, three-dimensional 
(3D) surfaces are increasingly being utilized for modern 
industrial applications. The quality of these surfaces has 
an important impact on the overall quality of products. 
For example, the inner surface of combustion chamber of 

engine cylinder head can greatly affect the performance of 
the engine, such as the compression ratio. Surface classifica-
tion is one of the most effective means to identify surface 
quality and it is a critical process in product quality control.

Traditional quality control monitors the key product 
characteristics (KPCs) of manufactured parts, e.g., flatness 
(Wang et al., 2014a, 2014b; Zhang et al., 2016), roundness 
(Colosimo et al., 2008, 2010; Zhao et al., 2020) and surface 
profile (Jin et al., 2015). KPCs are collected and calculated 
by the measurement systems, such as caliper, coordinate 
measurement machine (CMM), or digital camera (Wells 
et al., 2021). However, with the recent advancement of 
measurement technology, high definition metrology (HDM) 
technologies, such as laser scanner, stereo camera and struc-
tured light system, have been gradually adopted for measure-
ment. HDM collects millions of data points in seconds and 
its measurement accuracy can reach ± 1 µm (Wang et al., 
2014a, 2014b). The measurement principle of HDM and 
an example of the measurement process of an engine block 
surface are shown in Fig. 1.

By contrast, traditional measurement methods only meas-
ure the points of interest and cannot fully reflect the entire 
contour of the surface. Figure 2 shows a comparison of 
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CMM and HDM measurement techniques for measuring an 
engine block surface. Compared with CMM, the point cloud 
data collected by HDM can better reflect the complete 3D 
topography information of the entire surface.

For point cloud data, although KPCs can be used to detect 
related offsets, they do not make full use of all available 
information in the point cloud data. This mismatch between 
data and processing technology has caused the “rich data 
but poor information” problem (Choudhary et al., 2008). To 
date, several research studies have been conducted on profile 
monitoring and defects detection based on point cloud data. 
Du et al. (2015a, 2015b) proposed a series of point cloud 
filtering approaches based on support vector machine and 
shearlet methods, to extract different surface components. 
Wang et al. (2014a, 2014b) converted point cloud data into 
grayscale images to evaluate the form error of the surface. 
However, these researches only focus on planar surfaces.

Other proposed approaches suggest using control charts 
to monitor the deviation between the point cloud data and 
the nominal surface. Zang and Qiu (2018a, 2018b) calcu-
lated the translation and rotation matrix of the measurements 
and the nominal point cloud to monitor 3D printing sur-
face quality. This method can be applied to an arbitrary 3D 
surface with regular and sparse measurements. Stankus and 

Castillo-Villar (2019) proposed a multivariate generalized 
likelihood ratio control chart to monitor a curved surface. 
Wells et al. (2021) converted the point cloud into a non-
uniform rational basis spline (NURBS) model, and used the 
exponentially weighted moving average (EWMA) control 
chart to monitor the parameters of the NURBS model. How-
ever, these methods require a known nominal surface or a 
computer aided design (CAD) model, which are not avail-
able in some cases. Wang and Tsung (2005) and Wells et al. 
(2013) used a quantile–quantile (Q–Q) plot method to moni-
tor point clouds. The Q-Q plot transforms high dimensional 
data into linear profiles to determine whether two sets of data 
come from the same distribution. Osada et al. (2002) and 
Laga et al. (2019) used distribution histogram to represent 
the shape characteristics of 3D surfaces. Huang et al. (2018) 
divided a 3D surface into small planes and then classified the 
surface based on the features of the small planes. Although 
these methods can be applied to assess the quality of 3D 
surfaces, using the feature extraction for complex 3D shapes 
may miss information about local changes.

To solve the problem that the existing methods have 
limited scenarios of application (difficult to apply to arbi-
trary 3D surface), this paper proposes a novel deep learn-
ing (DL) approach to process the point cloud data and 

Fig. 1  Measurement by HDM

Fig. 2  Comparison of different 
surface measurement techniques
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classify the quality of 3D surfaces which are composed of 
several sub-regions with different characteristics.

Recently, DL has emerged as a highly effective network 
structure for processing the high-density data. The mul-
tiple layers stacked in the network can fully capture the 
representative information from raw input data (Li et al., 
2020). For point cloud data, recent advances of DL meth-
ods have mostly focused on object classification, such as 
the Volumetric-based method (Maturana & Scherer, 2015; 
Ning et al., 2020), multi-view method (Su et al., 2015; 
Wu et al., 2015), and PointNet method (Qi et al., 2016, 
2017). To the best of our knowledge, no DL methods have 
been proposed for quality classification of 3D surfaces. 
Compared with object classification, quality classifica-
tion of 3D surfaces requires more attention to the detailed 
characteristics of objects. This is important because the 
quality of some workpieces may be insufficient in a small 
area, and this variation may not be detected in an average 
evaluation of the entire shape.

In this paper, a systematic approach including a novel 
parallel classification network (PCN) is explored for the 
quality classification of 3D surfaces. In this approach, a 3D 
surface is registered and divided into several sub-regions. 
Based on DL, the features of the sub-regions are extracted 
and processed by the PCN to obtain the classification result 
of the 3D surface.

The rest of this paper is organized as follows. The frame-
work and procedures of the proposed method are described 
in detail in “The proposed method” section. “Simulation 
study” section shows the simulation process, results and 
comparison with other methods. A real case about the inner 
surface quality classification of the engine cylinder head 
combustion chamber is discussed in “Case study” section. 
Concluding remarks are presented in “Conclusion” section.

The proposed method

Overview and framework

A 3D surface can be considered as the splicing of smooth 
and blending sub-regions. These sub-regions may have dif-
ferent characteristics due to the intended design or the pro-
cessing method, so they make different contributions to the 
overall surface quality. In the proposed method, a 3D surface 
is segmented into several sub-regions according to the char-
acteristics of the points. A novel neural network PCN includ-
ing parallel neural network (PNN) and deep neural network 
(DNN) is designed to extract the features of sub-regions and 
classify the 3D surface.

The framework of the proposed approach is shown in 
Fig. 3, and the procedure involves the following steps.

Step 1: Region segmentation of 3D surface. In this step, a 
3D surface is segmented into several sub-regions through 
point cloud registration and region segmentation. The 
normal vector and curvature are regarded as the charac-
teristics of points, and are used to segment the surface 
region.
Step 2: Surface classification. The PCN method is devel-
oped to extract the features of sub-regions. PCN has two 
modules: PNN and DNN. For different sub-regions, the 
PNN is used to extract the features, and then the fea-
tures are linearly combined and processed in the fully 
connected layers of DNN. The classification result is 
obtained by the output layer.

Region segmentation of 3D surface

Region segmentation is performed to divide a complex sur-
face into individual sub-regions. Points with similar char-
acteristics are considered as belonging to the same region. 
At the junction of two regions, the characteristics of points 
usually show great changes (Di Angelo & Di Stefano, 2015), 
so the points on different sides of the junction can be divided 
into various regions. The segmentation procedure involves 
point cloud registration and region segmentation, which are 
described in the following two subsections.

Point cloud registration

Point cloud registration is used to match the point clouds of 
all samples to the same coordinate system through rotation 
and translation transformation. In this stage, the principal 
component analysis (PCA) method is used to register the 
point clouds of different samples.

For a sample of point cloud data, first, the center point to 
the origin of the coordinate system is moved to obtain the 
translation matrix. Next, the principal component directions 
of the sample are calculated. The first three principal com-
ponent directions are aligned with the X-axis, Y-axis, and 
Z-axis to obtain the rotation matrix. Last, the point cloud 
samples are aligned by the translation and rotation matrices. 
These procedures are performed on all point cloud samples. 
This unifies the coordinate systems and registers the point 
clouds of different samples.

Region segmentation

In modern product manufacturing processes, surface design 
is usually conducted via computer aided design/computer 
aided manufacturing (CAD/CAM). In CAD/CAM, product 
design involves various combinations of surfaces with dif-
ferent shapes. The actual processing or usage of these com-
ponent surfaces differ, so there are different standards for 
quality evaluation with different effects on overall quality. 
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Dividing the surface into meaningful natural point groups 
is essential for shape analysis and point cloud classification. 
Therefore, segmentation is a critical step in terms of point 
cloud processing.

For region segmentation, the measured point cloud data 
is divided into non-overlapping, single-characteristic con-
nected regions based on the characteristic attributes of 
points. For classification based on deep learning, region 
segmentation reduces the disorder among points and assists 
the neural network to precisely extract the features of each 
sub-region.

Widely used methods of point cloud segmentation can 
be classified into three classes: edge-based, region-based 

and cluster-based methods (Nurunnabi et al., 2012). The 
first two methods are hard partitioned, unambiguous, and 
sensitive to noise. Fuzzy C-Means (FCM) clustering is 
used in this study to segment point cloud data. FCM clus-
tering has strong robustness to noise because it uses an 
objective function to determine the degree of membership 
of each point belonging to a certain category.

In FCM algorithm, the point cloud data set 
P =

{

p1, p2, … , pn
}

 is divided into c subset, and each 
subset is represented by a c × n order matrix U. The objec-
tive function is defined as:

Fig. 3  Framework of the pro-
posed method
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where �ik is the membership value of the ith data in the kth 
category; m is the weighting parameter; dik is the feature 
weighted distance between the ith data pi and the kth cluster-
ing center vk , including the spatial distance, normal vector 
difference and curvature difference.

The optimal fuzzy partition is obtained by minimizing 
the objective function. It is operated in the following steps.

Step 1: Determine the number of clusters c, select the 
value of the parameter m, and initialize the cluster center 
V;
Step 2: Calculate or update membership matrix U, 

�ik =

�

c
∑

j=1

�

dik

dij

�
2

m−1

�−1

;

Step 3: Calculate or update new cluster centers V, 
vi =

∑n

i=1 (�ik)
m
(dik)

2

∑n

i=1 (�ik)
m ;

Step 4: Repeat steps 2–3 until the distance between the 
new centroid and the original centroid is below a certain 
threshold.

In the FCM algorithm, the number of clusters is manu-
ally defined. When the composition of the object shape is 
relatively simple, or the object is composed of a small num-
ber of curved surfaces, the number of sub-regions can be 
intuitively defined manually. When the composition of the 
curved surface is too complicated to determine intuitively, 
the number of sub-regions can be determined by applying 
the elbow method. The elbow method consists of plotting 

Jm(U, v) =

n
∑

i=1

c
∑

k=1

(

�ik

)m(

dik
)2

the explained variation as a function of the number of clus-
ters, then selecting the elbow of the curve as the number of 
clusters to use (Syakur et al., 2018).

Parallel classification network

After the region segmentation, the surface is divided into 
several sub-regions. The PCN is used to extract the features 
of the sub-regions and classify the 3D surface.

The structure of the classification network is shown in 
Fig. 4. It has two modules: PNN and DNN. The PNN is 
used to extract features of sub-regions by translating mul-
tidimensional arrays to vectors with reduced dimensions. 
In the DNN, the concatenated layer linearly connects the 
features of all sub-regions, and then the fully connected lay-
ers process the features and output the classification result.

Feature extraction based on PNN

Before the PNN, the points of each sub-region are resam-
pled to ensure the same number of input points exists in the 
same region for each sample. This is important because in 
the neural network, the input data is processed in batches 
and the data vectors must be the same size. The farthest 
point sampling (FSP) method is used here to evenly sample 
the points in each region so that the number of points in the 
same region of different samples would be the same and that 
the points would be evenly distributed.

The structure of the PNN is shown in Table  1. The 
PNN has four convolutional layers and one pooling layer. 
In the convolution layers, the point cloud is convolved by 
one-dimensional (1D) convolution kernels. The size of the 
convolution kernels in each layer is shown in Table 1. For 

Fig. 4  The structure of the PCN
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example, in the first layer, the dimension of the input data is 
n × 3, where n is the number of the points of a sub-region. 
Each point is represented by a 3D coordinate value. The size 
of the convolution kernel is 3 × 1 and there are 64 convolu-
tion kernels, so the dimension of the output data is n × 64. 
The data are then normalized and nonlinearized by Batch-
Norm and Activation function.

After four layers of convolution, a 512-dimensional fea-
ture is generated. The 3D features of each point are upgraded 
to 512 dimensions. A max pooling layer extracts 1D features 
by extracting the maximum values of the feature of points. 
The final output of the PNN is 512 features representing a 
sub-region.

Feature connection and classification based on DNN

DNN has a multi-layer structure and can reduce the dimen-
sion of the features through nonlinear transformation. In 
the DNN module, features obtained from N sub-regions are 
linearly connected by the concatenated layer and then the 
features are processed by the multi-layer perceptron (MLP). 
MLP is composed of several fully connected layers. These 
layers integrate the features and provide the output to the 
final classifier.

The structure of the DNN is shown in Table 2. The DNN 
has four linear layers. Each linear layer is fully connected, 
where each neuron is connected to all neurons in the previ-
ous layer. In the linear layer, the first number represents the 
number of input neurons and the latter number represents the 
number of output neurons. The output data are normalized 
and nonlinearized by BatchNorm and Activation function 

with a dropout to prevent overfitting. The last layer of the 
DNN outputs the classification result.

Simulation study

Problem description and analysis

In practical engineering applications, the surface of the 
product is usually composed of flat surfaces and natural 
quadric surfaces. A 3D surface consisting of cylindrical sur-
face, spherical surface, and flat is designed for the purposes 
of this simulation accordingly. In this surface (Fig. 5), the 
random error of the designed qualified surface obeys the 
normal distribution: � ∼ N(0, �2), �2 = 0.01.

The four unqualified samples are designed as:

a. Global deviation, σ2 = 0. 02, 0.03, 0.05.
b. Deviation in the cylindrical surface, σ2 = 0. 02, 0.03, 

0.05.
c. Deviation in the spherical surface, σ2 = 0. 02, 0.03, 0.05.
d. Deviation in the flat, σ2 = 0. 02, 0.03, 0.05.

These four deviation states are shown in Fig. 6.
After considering the different deviation states, the simu-

lation contains the following four cases:

1. Case1. Training set and test set: g0(x) and g1(x).

 The unqualified samples of training set and test set 
are global deviation, and each deviation case (dif-
ferent σ2 value) contains 20 samples. In this case, 
the number of samples in training set and test set 
are both 80.

2. Case 2. Training set: g0(x) and g1(x) . Test set: g0(x) , 
g2(x) , g3(x) and g4(x).

 In the training set, the unqualified samples are 
global deviation. In the test set, the unqualified 
samples are local deviation. Each deviation case 
(different σ2 value) contains 20 samples. In this 
case, the number of samples in training set and 
test set are 80 and 200 respectively.

Table 1  The structure of the 
PNN

Parameter L
1

L
2

L
3

L
4

Max pooling

Input n × 3 n × 64 n × 128 n × 256 n × 512

Conv (3,64,1) (64,128,1) (128,256,1) (256,512,1) –
BatchNorm 64 128 256 512 –
Activation function ✓ ✓ ✓ – –
Output n × 64 n × 128 n × 256 n × 512 512

Table 2  The structure of the DNN

Parameter L
1

L
2

L
3

L
4

Input N × 512 1024 512 256
Linear (N × 512 , 

1024)
(1024, 512) (512, 256) (256, 2)

BatchNorm 1024 512 256 –
Activation func-

tion
✓ ✓ ✓ –

Dropout ✓ ✓ ✓ –
Output 1024 512 256 2
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3. Case 3. Training set: g0(x) , g2(x) , g3(x) and g4(x) . Test 
set: g0(x) and g1(x).

 In the training set, the unqualified samples are 
local deviation. In the test set, the unqualified 
samples are global deviation. Each deviation case 
(different σ2 value) contains 20 samples. In this 
case, the number of samples in training set and 
test set are 200 and 80 respectively.

4. Case 4. Training set and test set: g0(x) , g1(x) , g2(x) , g3(x) 
and g4(x).

The training set and test set samples contain all the condi-
tions. the number of samples in training set and test set are 
both 260.

The simulated surface is composed of five continuous 
sub-surfaces. According to manual experience, five sub-
regions provide effective segmentation results without 
over-segmentation. In the simulation, 1–6 sub-regions are 
segmented for comparison to verify this assertion. In addi-
tion, excessive sub-regions during point cloud segmentation 
result in different segmentation results of samples under high 
noise conditions. To eliminate this difference, the cluster 

Fig. 5  The qualified surface 
g
0
(x)

Cylindrical surface

Spherical surface

Flat

Fig. 6  The four deviation states
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center matrix of the samples is saved in the training set to 
ensure that the locations of the regions in different samples 
are the same. Figure 7 shows the segmentation results under 
different numbers of sub-regions.

Hyperparameters in the classification network affect the 
learning process and final classification results. It is neces-
sary to discuss the influence of the hyperparameters on the 
classification accuracy and the decrease rate of loss value. 
The values of hyperparameters determined by experiments 
can perform well in a variety of situations. Table 3 shows 
the hyperparameter values used in this study.

The classification accuracy of the PCN with 1–6 sub-
regions and in various cases was determined respectively as 
shown in Table 4.

The number of sub-regions appears to significantly 
impact the classification results; additional sub-regions, 
further, are not necessarily preferable to fewer sub-regions. 
The case with five sub-regions shows highest classification 
accuracy. The simulation surface is composed of five sub-
surfaces, so it follows that optimal results are achievable 

when the segmentation pattern mirrors the actual surface 
composition pattern. This conclusion is consistent with the 
theoretical assumption. Meaningful region segmentation 
can improve the accuracy of the classification network.

The result also shows that Case 2 has the lowest classi-
fication accuracy. In Case 2, the partial deviation is tested 
by training the global deviation. Although the accuracy 
is not as strong in this case as in other cases, when the 
segmentation subregion is 5, the classification accuracy 
has been significantly improved. The results of Case 2 and 
Case 3 show that the proposed model has generalization 
ability.

Fig. 7  Segmentation results under different numbers of sub-regions

Table 3  The values of 
hyperparameters in the PCN

Hyperparameter Value

Dropout rate 0.3
Epoch 120
Learning rate 0.001
Activation function Tanh

Table 4  The classification accuracy of PCN in simulation

The bold value indicates the optimal value in each case

Number of 
sub-regions

Case 1 Case 2 Case 3 Case 4 Average

1 0.767 0.589 0.731 0.664 0.688
2 0.875 0.701 0.845 0.762 0.796
3 0.913 0.706 0.874 0.787 0.820
4 0.924 0.712 0.866 0.801 0.826
5 0.957 0.758 0.925 0.843 0.871
6 0.936 0.720 0.872 0.819 0.837
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As discussed below, the proposed method is also 
compared with other methods to further illustrate its 
effectiveness.

Comparison and discussion

There have been few studies on 3D surface quality classifica-
tion based on point cloud data, especially methods based on 
deep learning. As PNN is used mainly for feature extraction, 
the approaches that extract features from point clouds are 
considered to be comparison. The existing feature extraction 
methods classify, evaluate, or monitor 3D surface accord-
ing to the normal vector, curvature, and other descriptors of 
the point cloud. The descriptors express the geometric and 
topological properties of the shape of 3D surface, and they 
are divided into global and local features (Lara López et al., 
2017). Global and local feature methods are described below 
with two representative methods given for comparison.

1. Global feature

The global feature is calculated from the information of 
all points in the point cloud. In this method, the geometric 
attributes can be described by a unique feature vector. Osada 
et al. (2002) first proposed measuring the geometric proper-
ties of a 3D model through a shape function. They calculated 
the probability of the shape function statistically, then used a 
distribution histogram to represent the shape characteristics. 
On this basis, Laga et al. (2019) estimated the dissimilar-
ity between the two models by comparing their respective 
distribution histograms using dissimilarity measure. The �2 
statistics are regarded as descriptors to represent this metric.

The application process of this method is as follows. First, 
calculate the histogram of the global features for each sam-
ple in the training set. Then, perform least squares fitting on 
the histograms of all qualified samples in the training set to 
obtain statistical distribution curve. In the test set, calculate 
the �2 statistics, i.e., the distance between the histogram of 
each sample and the distribution curve. When a statistic is 
greater than threshold, the corresponding sample is consid-
ered to be unqualified.

2. Local feature

Local features include statistics of vertex data, normal 
distribution, projection, and other factors related to the fea-
ture description of the vertex. A histogram or local geo-
metric characteristic information statistics, such as normal 
and curvature and other features, are typically used to form 
feature descriptors. Huang et al. (2018) divided a 3D sur-
face into multiple small areas, then approximated each small 
area to a plane. They explored wavelet packet entropy and 
normal vectors to represent the features of multiple small 

areas. They also proposed three individual control charts to 
monitor three quality parameters. If any quality parameter is 
out of control limit, the corresponding sample is considered 
to be unqualified.

These methods are well-established, effective methods 
for 3D surface classifying. The simulation results are shown 
in Table 5.

According to the results in Table 5, the proposed method 
has the highest classification accuracy in most cases, fol-
lowed by the local feature method. The global feature 
method is the least effective of the three methods. The global 
feature method is not strong in discriminating details and 
easily loses the local features, so its inability to identify 
unqualified samples. Especially in Case 2 and Case 4, there 
are a large proportion of unqualified samples, the global 
feature method is almost impossible to classify correctly. 
The local feature method divides the surface into several 
small regions. Compared with the global feature method, it 
can extract more sufficient information. But because three 
control charts are used at the same time, it is easy to iden-
tify qualified samples as unqualified samples. Therefore, the 
local feature method has higher classification accuracy when 
the proportion of qualified products is relatively small.

The PCN instead divides the point cloud into meaningful 
sub-regions, then divides the point cloud manually to extract 
the feature information related to the deviation. The classi-
fication accuracy is significantly improved by the proposed 
method compared to the other methods, which further proves 
that the proposed method has strong generalization ability.

Case study

In this section, a case study on the inner surface quality clas-
sification of the engine cylinder head combustion chamber is 
analyzed to assess the application of the proposed method. 
The inner surface of the combustion chamber of the engine 
cylinder head is a 3D surface. The shape of the inner surface 
will affect the volume of the combustion chamber, which in 
turn affects the performance of the engine. The inner surface 
of the combustion chamber is made by casting. The mold is 
used under high temperature conditions and with frequent 

Table 5  Comparison of classification accuracy

The bold value indicates the optimal value in each case

Method Case 1 Case 2 Case 3 Case 4 Average

PCN 0.957 0.758 0.925 0.843 0.871
Global feature 

(Laga et al., 
2019)

0.663 0.485 0.763 0.542 0.613

Local feature 
(Huang 
et al., 2018)

0.738 0.775 0.813 0.804 0.783
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contact with the casting material for a long period of time, 
which can lead to wear.

In the current production, the quality of the inner surface 
is indirectly determined by mold inspection by the CMM. In 
the mold inspection, the measurement area and the number 
of measurement points are artificially selected, and the qual-
ity of the mold is evaluated by using engineering experience. 
This method can only measure the mold at intervals, which 
can easily miss problems in batches of parts, resulting in 
major losses.

By using HDM, the point cloud data of the inner surface 
can be obtained within minutes, and the inner surface can be 
directly measured. Therefore, any errors in the processing of 
the cylinder head combustion chamber can be rapidly identi-
fied by analyzing the inner surface point cloud data, allow-
ing the quick adjustment of the mold as needed to ensure 
product quality.

In this experiment, sixteen B12 series engines of an auto-
mobile processing plant are measured by HDM equipment 
to obtain the point cloud data of cylinder head combustion 
chambers. Figure 8 shows the measurement process of the 
cylinder head. Figure 8a is the measurement equipment, and 
Fig. 8b is the measurement process. The cylinder heads are 
scanned from left to right by line laser. Each line of the line 
laser contains 1280 points, and 2000–3000 lines are meas-
ured for each cylinder head. Figure 9 shows the point cloud 
data of an engine cylinder head. Figure 10 shows the point 
cloud data of one cavity.

Result analysis

A total of 64 combustion chambers are measured by HDM 
equipment, including 24 unqualified samples which are 
manually tested due to mold wear. These samples are 
equally distributed to the training set and test set.

After measuring the point cloud, there are approxi-
mately 90,000 points in each cavity, and the number of 
sampling points is abundant. In order to expand the train-
ing set, 70,000 points are taken for each sample at random. 
Each point cloud is sampled twice to double the training 
set. Therefore, there are 64 samples in the training set and 
32 samples in the test set.

Consider a sample cavity as an example of the preproc-
essing and segmentation processes of combustion cham-
bers. During measurement, the interference of ambient 
light and the surface reflection of the measured workpiece 
will produce outliers. Because the point cloud obtained by 
HDM is high-density and the outliers are prominent and 
easily detected, the outliers can be eliminated by using the 
spatial distance from the neighbor points of the point cloud 
(Huang et al., 2018). The average distance of the K-nearest 
neighbor points of each point is calculated first. Then the 
3σ law is used to eliminate outliers. When an average dis-
tance of a point is larger than the total limit, the point is 
considered an outlier and should be eliminated. As shown 
in Fig. 11, the points in the red circle are outliers and need 
to be eliminated.

Fig. 8  The measurement pro-
cess of cylinder head

Fig. 9  Point cloud data of an 
engine cylinder head
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Similar to the simulation surface, the cavity is composed 
of three different surface types. The elbow method is used 
here to determine the number of sub-regions of the com-
bustion chamber surface. As shown in Fig. 12, when the 
number of sub-regions is 5, the curve reaches the inflection 
point. The number of sub-regions is set to five to obtain the 
segmentation results shown in Fig. 13.

Each sample is sampled, registered, and segmented 
according to the proposed method, then trained and tested 
using the PCN. Figure 14 shows the process of training and 
test. The final accuracy of the test set is 0.848.

Comparison and discussion

The same training and test sets are used to compare PCN 
with global feature and local feature methods. The results 
are shown in Table 6.

Table 6 shows that the proposed method has the highest 
classification accuracy, followed by the local feature method. 
Global feature method shows the lowest accuracy. These 

(a) A cavity of engine cylinder head (b) Point cloud data of a cavity

Spherical pit

Ellipsoidal pit

The boss

Fig. 10  Point cloud data of a cavity of engine cylinder head

Fig.11  The outliers of the point cloud

Fig. 12  The elbow curve of the number of sub-regions

Fig.13  The sub-region division of the point cloud
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results are consistent with simulation results. The proposed 
method is 6.7% and 22.3% more accurate than the global 
feature and local feature methods, respectively. For complex 
cylinder head surfaces, the proposed method remains good 
performance.

Conclusion

The PCN method is established in this study based on deep 
learning for the quality classification of 3D surfaces. This 
method is the first to apply deep learning to point cloud-
based surface quality classification. This method includes 
region segmentation and quality classification. In region 
segmentation, the points with similar features are divided 
into the same region. In quality classification, a novel net-
work PCN is proposed to directly extract the features of 
point cloud data and classify 3D surfaces.

Compared with the two representative point cloud feature 
extraction methods, the proposed method shows promising 
results in both simulations and the case study. In the simu-
lation, different training and test sets are constructed for 
comparison. Simulation results show that meaningful point 
cloud segmentation positively affects the feature extraction 
of neural networks. From the method comparison results, 
the proposed PCN shows the highest classification accuracy 
in most cases, suggesting that it has strong generalization 
ability. In the case study, the inner surface quality of the 
engine cylinder head combustion chamber is classified to 
further test the proposed method. Compared with other 
methods, the proposed method exhibits a significantly higher 

classification accuracy. Taken together, the results show 
that the use of segmentation and feature extraction for sub-
regions markedly improves the overall classification effect. 
The processing of detailed information appears to remit 
better 3D surface quality classification results than global 
information processing. Moreover, the results of automatic 
extraction of sub-region features through neural networks 
are better than artificial local features.

The results indicate that the proposed method is suitable 
for classifying 3D surfaces based on point cloud data. Large 
amounts of data can be obtained in the production line, 
leading to further improvement of the classification results. 
There are several possible directions for future research.

1. In this study, only offline data is used to classify the 
surface quality. The accuracy and stability of the algo-
rithm should be improved for use with online detection. 
Combined with the rapid measurement of HDM equip-
ment, this method can be used to quickly detect changes 
in production conditions that alter surface quality, and 
realize the online classification of 3D surface quality.

2. The use of 3D point cloud data is a significant research 
challenge. This method provides a reference for the 
detailed information extraction of high-density point 
cloud data and can be combined with other point cloud 
technologies for accurate and rapid processing of point 
cloud data.
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